On the localization of the spectrum of some perturbations of a two-dimensional harmonic oscillator

In this paper, we study the localization of the discrete spectrum of certain perturbations of a two-dimensional harmonic oscillator. The convergence of the expansion of the source function in terms of the eigenfunctions of a two-dimensional harmonic oscillator is investigated. A representation of Gr...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Complex variables and elliptic equations Ročník 66; číslo 6-7; s. 1194 - 1208
Hlavní autoři: Kanguzhin, Baltabek, Fazullin, Ziganur
Médium: Journal Article
Jazyk:angličtina
Vydáno: Colchester Taylor & Francis 03.07.2021
Taylor & Francis Ltd
Témata:
ISSN:1747-6933, 1747-6941
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we study the localization of the discrete spectrum of certain perturbations of a two-dimensional harmonic oscillator. The convergence of the expansion of the source function in terms of the eigenfunctions of a two-dimensional harmonic oscillator is investigated. A representation of Green's function of a two-dimensional harmonic oscillator is obtained. The singularities of Green's function are highlighted. The well-posed definition of the maximal operator generated by a two-dimensional harmonic oscillator on a specially extended domain of definition is given. Then, we describe everywhere solvable invertible restrictions of the maximal operator. We establish that the eigenvalues of a harmonic oscillator will also be the eigenvalues of well-posed restrictions. The results are supported by illustrative examples.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1747-6933
1747-6941
DOI:10.1080/17476933.2021.1885386