On the localization of the spectrum of some perturbations of a two-dimensional harmonic oscillator

In this paper, we study the localization of the discrete spectrum of certain perturbations of a two-dimensional harmonic oscillator. The convergence of the expansion of the source function in terms of the eigenfunctions of a two-dimensional harmonic oscillator is investigated. A representation of Gr...

Full description

Saved in:
Bibliographic Details
Published in:Complex variables and elliptic equations Vol. 66; no. 6-7; pp. 1194 - 1208
Main Authors: Kanguzhin, Baltabek, Fazullin, Ziganur
Format: Journal Article
Language:English
Published: Colchester Taylor & Francis 03.07.2021
Taylor & Francis Ltd
Subjects:
ISSN:1747-6933, 1747-6941
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, we study the localization of the discrete spectrum of certain perturbations of a two-dimensional harmonic oscillator. The convergence of the expansion of the source function in terms of the eigenfunctions of a two-dimensional harmonic oscillator is investigated. A representation of Green's function of a two-dimensional harmonic oscillator is obtained. The singularities of Green's function are highlighted. The well-posed definition of the maximal operator generated by a two-dimensional harmonic oscillator on a specially extended domain of definition is given. Then, we describe everywhere solvable invertible restrictions of the maximal operator. We establish that the eigenvalues of a harmonic oscillator will also be the eigenvalues of well-posed restrictions. The results are supported by illustrative examples.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1747-6933
1747-6941
DOI:10.1080/17476933.2021.1885386