Regularized gradient-projection methods for equilibrium and constrained convex minimization problems

In this article, based on Marino and Xu’s method, an iterative method which combines the regularized gradient-projection algorithm (RGPA) and the averaged mappings approach is proposed for finding a common solution of equilibrium and constrained convex minimization problems. Under suitable condition...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of inequalities and applications Ročník 2013; číslo 1
Hlavní autori: Tian, Ming, Huang, Li-Hua
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Cham Springer International Publishing 14.05.2013
Predmet:
ISSN:1029-242X, 1029-242X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In this article, based on Marino and Xu’s method, an iterative method which combines the regularized gradient-projection algorithm (RGPA) and the averaged mappings approach is proposed for finding a common solution of equilibrium and constrained convex minimization problems. Under suitable conditions, it is proved that the sequences generated by implicit and explicit schemes converge strongly. The results of this paper extend and improve some existing results. MSC: 58E35, 47H09, 65J15.
ISSN:1029-242X
1029-242X
DOI:10.1186/1029-242X-2013-243