Regularized gradient-projection methods for equilibrium and constrained convex minimization problems

In this article, based on Marino and Xu’s method, an iterative method which combines the regularized gradient-projection algorithm (RGPA) and the averaged mappings approach is proposed for finding a common solution of equilibrium and constrained convex minimization problems. Under suitable condition...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of inequalities and applications Jg. 2013; H. 1
Hauptverfasser: Tian, Ming, Huang, Li-Hua
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Cham Springer International Publishing 14.05.2013
Schlagworte:
ISSN:1029-242X, 1029-242X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this article, based on Marino and Xu’s method, an iterative method which combines the regularized gradient-projection algorithm (RGPA) and the averaged mappings approach is proposed for finding a common solution of equilibrium and constrained convex minimization problems. Under suitable conditions, it is proved that the sequences generated by implicit and explicit schemes converge strongly. The results of this paper extend and improve some existing results. MSC: 58E35, 47H09, 65J15.
ISSN:1029-242X
1029-242X
DOI:10.1186/1029-242X-2013-243