Regularized gradient-projection methods for equilibrium and constrained convex minimization problems

In this article, based on Marino and Xu’s method, an iterative method which combines the regularized gradient-projection algorithm (RGPA) and the averaged mappings approach is proposed for finding a common solution of equilibrium and constrained convex minimization problems. Under suitable condition...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of inequalities and applications Ročník 2013; číslo 1
Hlavní autoři: Tian, Ming, Huang, Li-Hua
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cham Springer International Publishing 14.05.2013
Témata:
ISSN:1029-242X, 1029-242X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this article, based on Marino and Xu’s method, an iterative method which combines the regularized gradient-projection algorithm (RGPA) and the averaged mappings approach is proposed for finding a common solution of equilibrium and constrained convex minimization problems. Under suitable conditions, it is proved that the sequences generated by implicit and explicit schemes converge strongly. The results of this paper extend and improve some existing results. MSC: 58E35, 47H09, 65J15.
ISSN:1029-242X
1029-242X
DOI:10.1186/1029-242X-2013-243