Near-linear-time algorithm for the geodetic Radon number of grids
The Radon number of a graph is the minimum integer r such that all sets of at least r of its vertices can be partitioned into two subsets whose convex hulls intersect. Determining the Radon number of general graphs in the geodetic convexity is NP-hard. In this paper, we show the problem is polynomia...
Gespeichert in:
| Veröffentlicht in: | Discrete Applied Mathematics Jg. 210; S. 277 - 283 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier B.V
10.09.2016
|
| Schlagworte: | |
| ISSN: | 0166-218X, 1872-6771 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | The Radon number of a graph is the minimum integer r such that all sets of at least r of its vertices can be partitioned into two subsets whose convex hulls intersect. Determining the Radon number of general graphs in the geodetic convexity is NP-hard. In this paper, we show the problem is polynomial for d-dimensional grids, for all d≥1. The proposed algorithm runs in near-linear O(d(logd)1/2) time for grids of arbitrary sizes, and in sub-linear O(logd) time when all grid dimensions have the same size. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 0166-218X 1872-6771 |
| DOI: | 10.1016/j.dam.2015.05.001 |