Near-linear-time algorithm for the geodetic Radon number of grids

The Radon number of a graph is the minimum integer r such that all sets of at least r of its vertices can be partitioned into two subsets whose convex hulls intersect. Determining the Radon number of general graphs in the geodetic convexity is NP-hard. In this paper, we show the problem is polynomia...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Discrete Applied Mathematics Ročník 210; s. 277 - 283
Hlavní autoři: Dourado, Mitre Costa, Pereira de Sá, Vinícius Gusmão, Rautenbach, Dieter, Szwarcfiter, Jayme Luiz
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 10.09.2016
Témata:
ISSN:0166-218X, 1872-6771
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The Radon number of a graph is the minimum integer r such that all sets of at least r of its vertices can be partitioned into two subsets whose convex hulls intersect. Determining the Radon number of general graphs in the geodetic convexity is NP-hard. In this paper, we show the problem is polynomial for d-dimensional grids, for all d≥1. The proposed algorithm runs in near-linear O(d(logd)1/2) time for grids of arbitrary sizes, and in sub-linear O(logd) time when all grid dimensions have the same size.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0166-218X
1872-6771
DOI:10.1016/j.dam.2015.05.001