Generic hardness of the Boolean satisfiability problem

It follows from the famous result of Cook about the NP-completeness of the Boolean satisfiability problem that there is no polynomial algorithm for this problem if . In this paper, we prove that the Boolean satisfiability problem remains computationally hard on polynomial strongly generic subsets of...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Groups, complexity, cryptology Ročník 9; číslo 2; s. 151 - 154
Hlavný autor: Rybalov, Alexander
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Berlin De Gruyter 01.11.2017
Walter de Gruyter GmbH
Predmet:
ISSN:1867-1144, 1869-6104
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:It follows from the famous result of Cook about the NP-completeness of the Boolean satisfiability problem that there is no polynomial algorithm for this problem if . In this paper, we prove that the Boolean satisfiability problem remains computationally hard on polynomial strongly generic subsets of formulas provided and . Boolean formulas are represented in the natural way by labeled binary trees.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1867-1144
1869-6104
DOI:10.1515/gcc-2017-0008