Generic hardness of the Boolean satisfiability problem
It follows from the famous result of Cook about the NP-completeness of the Boolean satisfiability problem that there is no polynomial algorithm for this problem if . In this paper, we prove that the Boolean satisfiability problem remains computationally hard on polynomial strongly generic subsets of...
Uloženo v:
| Vydáno v: | Groups, complexity, cryptology Ročník 9; číslo 2; s. 151 - 154 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Berlin
De Gruyter
01.11.2017
Walter de Gruyter GmbH |
| Témata: | |
| ISSN: | 1867-1144, 1869-6104 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | It follows from the famous result of Cook about the
NP-completeness of the Boolean satisfiability problem
that there is no polynomial
algorithm for this problem if
.
In this paper, we prove that the Boolean satisfiability problem
remains computationally hard on polynomial strongly generic subsets of
formulas provided
and
.
Boolean formulas are represented in the natural way by
labeled binary trees. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1867-1144 1869-6104 |
| DOI: | 10.1515/gcc-2017-0008 |