Numerical Solution of Partial Symmetric Generalized Eigenvalue Problems in Piezo Device Modal Analysis

We demonstrate how different computational approaches affect the performance of solving the generalized eigenvalue problem (GEP). The layered piezo device is studied for resonance frequencies using different meshes, sparse matrix representations, and numerical methods in COMSOL Multiphysics and ACEL...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Communications on Applied Mathematics and Computation (Online) Ročník 7; číslo 3; s. 1002 - 1015
Hlavní autori: Muratova, Galina V., Martynova, Tatiana S., Oganesyan, Pavel A.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Singapore Springer Nature Singapore 01.06.2025
Springer Nature B.V
Predmet:
ISSN:2096-6385, 2661-8893
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We demonstrate how different computational approaches affect the performance of solving the generalized eigenvalue problem (GEP). The layered piezo device is studied for resonance frequencies using different meshes, sparse matrix representations, and numerical methods in COMSOL Multiphysics and ACELAN-COMPOS packages. Specifically, the matrix-vector and matrix-matrix product implementation for large sparse matrices is discussed. The shift-and-invert Lanczos method is used to solve the partial symmetric GEP numerically. Different solvers are compared in terms of the efficiency. The results of numerical experiments are presented.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2096-6385
2661-8893
DOI:10.1007/s42967-025-00487-1