Numerical Solution of Partial Symmetric Generalized Eigenvalue Problems in Piezo Device Modal Analysis

We demonstrate how different computational approaches affect the performance of solving the generalized eigenvalue problem (GEP). The layered piezo device is studied for resonance frequencies using different meshes, sparse matrix representations, and numerical methods in COMSOL Multiphysics and ACEL...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Communications on Applied Mathematics and Computation (Online) Ročník 7; číslo 3; s. 1002 - 1015
Hlavní autoři: Muratova, Galina V., Martynova, Tatiana S., Oganesyan, Pavel A.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Singapore Springer Nature Singapore 01.06.2025
Springer Nature B.V
Témata:
ISSN:2096-6385, 2661-8893
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We demonstrate how different computational approaches affect the performance of solving the generalized eigenvalue problem (GEP). The layered piezo device is studied for resonance frequencies using different meshes, sparse matrix representations, and numerical methods in COMSOL Multiphysics and ACELAN-COMPOS packages. Specifically, the matrix-vector and matrix-matrix product implementation for large sparse matrices is discussed. The shift-and-invert Lanczos method is used to solve the partial symmetric GEP numerically. Different solvers are compared in terms of the efficiency. The results of numerical experiments are presented.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2096-6385
2661-8893
DOI:10.1007/s42967-025-00487-1