On Integer Partitions Corresponding to Numerical Semigroups

Numerical semigroups are cofinite additive submonoids of the natural numbers. Keith and Nath illustrated an injection from numerical semigroups to integer partitions (Keith and Nath in J Comb Number Theory 3(1):39–50, 2011). We explore this connection between partitions and numerical semigroups with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Resultate der Mathematik Jg. 78; H. 5; S. 193
Hauptverfasser: Burson, Hannah E., Nam, Hayan, Sisneros-Thiry, Simone
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Cham Springer International Publishing 01.10.2023
Springer Nature B.V
Schlagworte:
ISSN:1422-6383, 1420-9012
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Numerical semigroups are cofinite additive submonoids of the natural numbers. Keith and Nath illustrated an injection from numerical semigroups to integer partitions (Keith and Nath in J Comb Number Theory 3(1):39–50, 2011). We explore this connection between partitions and numerical semigroups with a focus on classifying the partitions that appear in the image of the injection from numerical semigroups. In particular, we count the number of partitions that correspond to numerical semigroups in terms of genus, Frobenius number, and multiplicity, with some restrictions.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1422-6383
1420-9012
DOI:10.1007/s00025-023-01974-8