On Integer Partitions Corresponding to Numerical Semigroups

Numerical semigroups are cofinite additive submonoids of the natural numbers. Keith and Nath illustrated an injection from numerical semigroups to integer partitions (Keith and Nath in J Comb Number Theory 3(1):39–50, 2011). We explore this connection between partitions and numerical semigroups with...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Resultate der Mathematik Ročník 78; číslo 5; s. 193
Hlavní autoři: Burson, Hannah E., Nam, Hayan, Sisneros-Thiry, Simone
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cham Springer International Publishing 01.10.2023
Springer Nature B.V
Témata:
ISSN:1422-6383, 1420-9012
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Numerical semigroups are cofinite additive submonoids of the natural numbers. Keith and Nath illustrated an injection from numerical semigroups to integer partitions (Keith and Nath in J Comb Number Theory 3(1):39–50, 2011). We explore this connection between partitions and numerical semigroups with a focus on classifying the partitions that appear in the image of the injection from numerical semigroups. In particular, we count the number of partitions that correspond to numerical semigroups in terms of genus, Frobenius number, and multiplicity, with some restrictions.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1422-6383
1420-9012
DOI:10.1007/s00025-023-01974-8