On Integer Partitions Corresponding to Numerical Semigroups
Numerical semigroups are cofinite additive submonoids of the natural numbers. Keith and Nath illustrated an injection from numerical semigroups to integer partitions (Keith and Nath in J Comb Number Theory 3(1):39–50, 2011). We explore this connection between partitions and numerical semigroups with...
Uloženo v:
| Vydáno v: | Resultate der Mathematik Ročník 78; číslo 5; s. 193 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Cham
Springer International Publishing
01.10.2023
Springer Nature B.V |
| Témata: | |
| ISSN: | 1422-6383, 1420-9012 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Numerical semigroups are cofinite additive submonoids of the natural numbers. Keith and Nath illustrated an injection from numerical semigroups to integer partitions (Keith and Nath in J Comb Number Theory 3(1):39–50, 2011). We explore this connection between partitions and numerical semigroups with a focus on classifying the partitions that appear in the image of the injection from numerical semigroups. In particular, we count the number of partitions that correspond to numerical semigroups in terms of genus, Frobenius number, and multiplicity, with some restrictions. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1422-6383 1420-9012 |
| DOI: | 10.1007/s00025-023-01974-8 |