On convergence of "divide the best" global optimization algorithms
In this paper a new class of multidimensional global optimization algorithms (called "divide the best" algorithms) is proposed. The class unifies and generalizes the classes of the characteristic methods and the adaptive partition algorithms introduced by Grishagin and Pinter respectively....
Uložené v:
| Vydané v: | Optimization Ročník 44; číslo 3; s. 303 - 325 |
|---|---|
| Hlavný autor: | |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Gordon and Breach Science Publishers
01.01.1998
|
| Predmet: | |
| ISSN: | 0233-1934, 1029-4945 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | In this paper a new class of multidimensional global optimization algorithms (called "divide the best" algorithms) is proposed. The class unifies and generalizes the classes of the characteristic methods and the adaptive partition algorithms introduced by Grishagin and Pinter respectively. The new scheme includes also some methods which do not fit either the characteristic or the adaptive partition families. A detailed convergence study is presented. A special attention is paid to cases where sufficient conditions of everywhere dense, local and global convergence are fulfilled only over subregions of the search domain. |
|---|---|
| ISSN: | 0233-1934 1029-4945 |
| DOI: | 10.1080/02331939808844414 |