On convergence of "divide the best" global optimization algorithms

In this paper a new class of multidimensional global optimization algorithms (called "divide the best" algorithms) is proposed. The class unifies and generalizes the classes of the characteristic methods and the adaptive partition algorithms introduced by Grishagin and Pinter respectively....

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Optimization Ročník 44; číslo 3; s. 303 - 325
Hlavní autor: Sergeyev, Yaroslav D.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Gordon and Breach Science Publishers 01.01.1998
Témata:
ISSN:0233-1934, 1029-4945
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper a new class of multidimensional global optimization algorithms (called "divide the best" algorithms) is proposed. The class unifies and generalizes the classes of the characteristic methods and the adaptive partition algorithms introduced by Grishagin and Pinter respectively. The new scheme includes also some methods which do not fit either the characteristic or the adaptive partition families. A detailed convergence study is presented. A special attention is paid to cases where sufficient conditions of everywhere dense, local and global convergence are fulfilled only over subregions of the search domain.
ISSN:0233-1934
1029-4945
DOI:10.1080/02331939808844414