Highly eccentric hip―hop solutions of the 2N―body problem

We show the existence of families of hip-hop solutions in the equal-mass 2N-body problem which are close to highly eccentric planar elliptic homographic motions of 2N bodies plus small perpendicular non-harmonic oscillations. By introducing a parameter [epsilon (Porson)], the homographic motion and...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Physica. D Ročník 239; číslo 3-4; s. 214 - 219
Hlavní autoři: BARRABES, Esther, CORS, Josep M, PINYOL, Conxita, SOLER, Jaume
Médium: Journal Article Publikace
Jazyk:angličtina
Vydáno: Amsterdam Elsevier 01.02.2010
Témata:
ISSN:0167-2789
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We show the existence of families of hip-hop solutions in the equal-mass 2N-body problem which are close to highly eccentric planar elliptic homographic motions of 2N bodies plus small perpendicular non-harmonic oscillations. By introducing a parameter [epsilon (Porson)], the homographic motion and the small amplitude oscillations can be uncoupled into a purely Keplerian homographic motion of fixed period and a vertical oscillation described by a Hill type equation. Small changes in the eccentricity induce large variations in the period of the perpendicular oscillation and give rise, via a Bolzano argument, to resonant periodic solutions of the uncoupled system in a rotating frame. For small [epsilon (Porson)][not equal to]0, the topological transversality persists and Brouwer's fixed point theorem shows the existence of this kind of solutions in the full system.
Bibliografie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0167-2789
DOI:10.1016/j.physd.2009.10.019