Highly eccentric hip―hop solutions of the 2N―body problem
We show the existence of families of hip-hop solutions in the equal-mass 2N-body problem which are close to highly eccentric planar elliptic homographic motions of 2N bodies plus small perpendicular non-harmonic oscillations. By introducing a parameter [epsilon (Porson)], the homographic motion and...
Gespeichert in:
| Veröffentlicht in: | Physica. D Jg. 239; H. 3-4; S. 214 - 219 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article Verlag |
| Sprache: | Englisch |
| Veröffentlicht: |
Amsterdam
Elsevier
01.02.2010
|
| Schlagworte: | |
| ISSN: | 0167-2789 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | We show the existence of families of hip-hop solutions in the equal-mass 2N-body problem which are close to highly eccentric planar elliptic homographic motions of 2N bodies plus small perpendicular non-harmonic oscillations. By introducing a parameter [epsilon (Porson)], the homographic motion and the small amplitude oscillations can be uncoupled into a purely Keplerian homographic motion of fixed period and a vertical oscillation described by a Hill type equation. Small changes in the eccentricity induce large variations in the period of the perpendicular oscillation and give rise, via a Bolzano argument, to resonant periodic solutions of the uncoupled system in a rotating frame. For small [epsilon (Porson)][not equal to]0, the topological transversality persists and Brouwer's fixed point theorem shows the existence of this kind of solutions in the full system. |
|---|---|
| Bibliographie: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| ISSN: | 0167-2789 |
| DOI: | 10.1016/j.physd.2009.10.019 |