Learning Adaptive Parameter Tuning for Image Processing

The non-stationary nature of image characteristics calls for adaptive processing, based on the local image content. We propose a simple and flexible method to learn local tuning of parameters in adaptive image processing: we extract simple local features from an image and learn the relation between...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronic Imaging Jg. 30; H. 13; S. 196-1 - 196-8
Hauptverfasser: Dong, Jingming, Frosio, Iuri, Kautz, Jan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Society for Imaging Science and Technology 28.01.2018
Schlagworte:
ISSN:2470-1173, 2470-1173
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The non-stationary nature of image characteristics calls for adaptive processing, based on the local image content. We propose a simple and flexible method to learn local tuning of parameters in adaptive image processing: we extract simple local features from an image and learn the relation between these features and the optimal filtering parameters. Learning is performed by optimizing a user defined cost function (any image quality metric) on a training set. We apply our method to three classical problems (denoising, demosaicing and deblurring) and we show the effectiveness of the learned parameter modulation strategies. We also show that these strategies are consistent with theoretical results from the literature.
Bibliographie:2470-1173(20180128)2018:13L.1961;1-
ISSN:2470-1173
2470-1173
DOI:10.2352/ISSN.2470-1173.2018.13.IPAS-196