Learning Adaptive Parameter Tuning for Image Processing

The non-stationary nature of image characteristics calls for adaptive processing, based on the local image content. We propose a simple and flexible method to learn local tuning of parameters in adaptive image processing: we extract simple local features from an image and learn the relation between...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Electronic Imaging Ročník 30; číslo 13; s. 196-1 - 196-8
Hlavní autoři: Dong, Jingming, Frosio, Iuri, Kautz, Jan
Médium: Journal Article
Jazyk:angličtina
Vydáno: Society for Imaging Science and Technology 28.01.2018
Témata:
ISSN:2470-1173, 2470-1173
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The non-stationary nature of image characteristics calls for adaptive processing, based on the local image content. We propose a simple and flexible method to learn local tuning of parameters in adaptive image processing: we extract simple local features from an image and learn the relation between these features and the optimal filtering parameters. Learning is performed by optimizing a user defined cost function (any image quality metric) on a training set. We apply our method to three classical problems (denoising, demosaicing and deblurring) and we show the effectiveness of the learned parameter modulation strategies. We also show that these strategies are consistent with theoretical results from the literature.
Bibliografie:2470-1173(20180128)2018:13L.1961;1-
ISSN:2470-1173
2470-1173
DOI:10.2352/ISSN.2470-1173.2018.13.IPAS-196