Dependence of eigenvalue of Sturm-Liouville operators on the real coupled boundary condition

In this paper, we discuss the continuous dependence of eigenvalue of Sturm-Liouville operators on the real coupled boundary condition by using of implicit function theorem. A geometric structure on SL(2,R) containing real coupled boundary conditions is firstly clarified, that is, the smooth embeddin...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of mathematical analysis and applications Ročník 538; číslo 2; s. 128398
Hlavní autor: Yang, Xinya
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Inc 15.10.2024
Témata:
ISSN:0022-247X, 1096-0813
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we discuss the continuous dependence of eigenvalue of Sturm-Liouville operators on the real coupled boundary condition by using of implicit function theorem. A geometric structure on SL(2,R) containing real coupled boundary conditions is firstly clarified, that is, the smooth embedding submanifold. Under this structure, we verify the continuous differentiability of the n-th eigenvalue with regard to the boundary condition and explicitly present the expression for its differential. Moreover, a sufficient condition for recognizing double eigenvalues is given.
ISSN:0022-247X
1096-0813
DOI:10.1016/j.jmaa.2024.128398