Dependence of eigenvalue of Sturm-Liouville operators on the real coupled boundary condition
In this paper, we discuss the continuous dependence of eigenvalue of Sturm-Liouville operators on the real coupled boundary condition by using of implicit function theorem. A geometric structure on SL(2,R) containing real coupled boundary conditions is firstly clarified, that is, the smooth embeddin...
Gespeichert in:
| Veröffentlicht in: | Journal of mathematical analysis and applications Jg. 538; H. 2; S. 128398 |
|---|---|
| 1. Verfasser: | |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Inc
15.10.2024
|
| Schlagworte: | |
| ISSN: | 0022-247X, 1096-0813 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | In this paper, we discuss the continuous dependence of eigenvalue of Sturm-Liouville operators on the real coupled boundary condition by using of implicit function theorem. A geometric structure on SL(2,R) containing real coupled boundary conditions is firstly clarified, that is, the smooth embedding submanifold. Under this structure, we verify the continuous differentiability of the n-th eigenvalue with regard to the boundary condition and explicitly present the expression for its differential. Moreover, a sufficient condition for recognizing double eigenvalues is given. |
|---|---|
| ISSN: | 0022-247X 1096-0813 |
| DOI: | 10.1016/j.jmaa.2024.128398 |