Dependence of eigenvalue of Sturm-Liouville operators on the real coupled boundary condition
In this paper, we discuss the continuous dependence of eigenvalue of Sturm-Liouville operators on the real coupled boundary condition by using of implicit function theorem. A geometric structure on SL(2,R) containing real coupled boundary conditions is firstly clarified, that is, the smooth embeddin...
Uloženo v:
| Vydáno v: | Journal of mathematical analysis and applications Ročník 538; číslo 2; s. 128398 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Inc
15.10.2024
|
| Témata: | |
| ISSN: | 0022-247X, 1096-0813 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this paper, we discuss the continuous dependence of eigenvalue of Sturm-Liouville operators on the real coupled boundary condition by using of implicit function theorem. A geometric structure on SL(2,R) containing real coupled boundary conditions is firstly clarified, that is, the smooth embedding submanifold. Under this structure, we verify the continuous differentiability of the n-th eigenvalue with regard to the boundary condition and explicitly present the expression for its differential. Moreover, a sufficient condition for recognizing double eigenvalues is given. |
|---|---|
| ISSN: | 0022-247X 1096-0813 |
| DOI: | 10.1016/j.jmaa.2024.128398 |