Finite dimensional invariant subspaces for algebras of linear operators and amenable Banach algebras
We study a finite dimensional invariant subspace property similar to Fan's Theorem on semigroups for arbitrary Banach algebras A in terms of amenability of X(A,ϕ), the closed subalgebra of A generated by the set of all maximal elements in A with respect to a character ϕ. As a consequence, we of...
Uložené v:
| Vydané v: | Linear algebra and its applications Ročník 510; s. 329 - 345 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Inc
01.12.2016
|
| Predmet: | |
| ISSN: | 0024-3795, 1873-1856 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | We study a finite dimensional invariant subspace property similar to Fan's Theorem on semigroups for arbitrary Banach algebras A in terms of amenability of X(A,ϕ), the closed subalgebra of A generated by the set of all maximal elements in A with respect to a character ϕ. As a consequence, we offer some applications to the measure algebra M(G) and the generalized Fourier algebra Ap(G) of a locally compact group G. |
|---|---|
| ISSN: | 0024-3795 1873-1856 |
| DOI: | 10.1016/j.laa.2016.08.028 |