Finite dimensional invariant subspaces for algebras of linear operators and amenable Banach algebras
We study a finite dimensional invariant subspace property similar to Fan's Theorem on semigroups for arbitrary Banach algebras A in terms of amenability of X(A,ϕ), the closed subalgebra of A generated by the set of all maximal elements in A with respect to a character ϕ. As a consequence, we of...
Gespeichert in:
| Veröffentlicht in: | Linear algebra and its applications Jg. 510; S. 329 - 345 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Inc
01.12.2016
|
| Schlagworte: | |
| ISSN: | 0024-3795, 1873-1856 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | We study a finite dimensional invariant subspace property similar to Fan's Theorem on semigroups for arbitrary Banach algebras A in terms of amenability of X(A,ϕ), the closed subalgebra of A generated by the set of all maximal elements in A with respect to a character ϕ. As a consequence, we offer some applications to the measure algebra M(G) and the generalized Fourier algebra Ap(G) of a locally compact group G. |
|---|---|
| ISSN: | 0024-3795 1873-1856 |
| DOI: | 10.1016/j.laa.2016.08.028 |