Probabilistic Generative Approach for Ambiguity-Aware Parameter Extraction
Artificial neural networks (ANNs) are increasingly used for parameter extraction in semiconductor device modeling. However, in practice, a parameter ambiguity issue arises, where multiple parameter combinations produce identical drain current values (<inline-formula> <tex-math notation=&quo...
Saved in:
| Published in: | IEEE transactions on electron devices Vol. 72; no. 10; pp. 5544 - 5550 |
|---|---|
| Main Authors: | , , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
IEEE
01.10.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 0018-9383, 1557-9646 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Artificial neural networks (ANNs) are increasingly used for parameter extraction in semiconductor device modeling. However, in practice, a parameter ambiguity issue arises, where multiple parameter combinations produce identical drain current values (<inline-formula> <tex-math notation="LaTeX">{I}_{\text {DS}} </tex-math></inline-formula>). To address this challenge, we introduce a novel probabilistic generative framework. Specifically, we utilize a conditional variational autoencoder (CVAE) to learn the latent distribution of ambiguous parameters (e.g., threshold voltage and mobility) and generate diverse possible candidate parameter sets conditioned on <inline-formula> <tex-math notation="LaTeX">{I}_{\text {DS}} </tex-math></inline-formula> characteristics. By validating the <inline-formula> <tex-math notation="LaTeX">{I}_{\text {DS}} </tex-math></inline-formula> characteristics of the candidates, we ultimately select the optimal parameter set. Experiments across different device sizes, process technologies, and operating conditions demonstrate the effectiveness of our model. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0018-9383 1557-9646 |
| DOI: | 10.1109/TED.2025.3594676 |