Planted Bipartite Graph Detection
We consider the task of detecting a hidden bipartite subgraph in a given random graph. This is formulated as a hypothesis testing problem, under the null hypothesis, the graph is a realization of an Erdős-Rényi random graph over n vertices with edge density q. Under the alternative, there exists a p...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on information theory Jg. 70; H. 6; S. 4319 - 4334 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
01.06.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 0018-9448, 1557-9654 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | We consider the task of detecting a hidden bipartite subgraph in a given random graph. This is formulated as a hypothesis testing problem, under the null hypothesis, the graph is a realization of an Erdős-Rényi random graph over n vertices with edge density q. Under the alternative, there exists a planted <inline-formula> <tex-math notation="LaTeX">k_{ \mathsf {R}} \times k_{ \mathsf {L}} </tex-math></inline-formula> bipartite subgraph with edge density <inline-formula> <tex-math notation="LaTeX">p>q </tex-math></inline-formula>. We characterize the statistical and computational barriers for this problem. Specifically, we derive information-theoretic lower bounds, and design and analyze optimal algorithms matching those bounds, in both the dense regime, where <inline-formula> <tex-math notation="LaTeX">p,q = \Theta \left ({1}\right) </tex-math></inline-formula>, and the sparse regime where <inline-formula> <tex-math notation="LaTeX">p,q = \Theta \left ({n^{-\alpha }}\right), \alpha \in \left ({0,2}\right] </tex-math></inline-formula>. We also consider the problem of testing in polynomial-time. As is customary in similar structured high-dimensional problems, our model undergoes an "easy-hard-impossible" phase transition and computational constraints penalize the statistical performance. To provide an evidence for this statistical computational gap, we prove computational lower bounds based on the low-degree conjecture, and show that the class of low-degree polynomials algorithms fail in the conjecturally hard region. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0018-9448 1557-9654 |
| DOI: | 10.1109/TIT.2024.3382228 |