Planted Bipartite Graph Detection

We consider the task of detecting a hidden bipartite subgraph in a given random graph. This is formulated as a hypothesis testing problem, under the null hypothesis, the graph is a realization of an Erdős-Rényi random graph over n vertices with edge density q. Under the alternative, there exists a p...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on information theory Ročník 70; číslo 6; s. 4319 - 4334
Hlavní autoři: Rotenberg, Asaf, Huleihel, Wasim, Shayevitz, Ofer
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.06.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0018-9448, 1557-9654
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We consider the task of detecting a hidden bipartite subgraph in a given random graph. This is formulated as a hypothesis testing problem, under the null hypothesis, the graph is a realization of an Erdős-Rényi random graph over n vertices with edge density q. Under the alternative, there exists a planted <inline-formula> <tex-math notation="LaTeX">k_{ \mathsf {R}} \times k_{ \mathsf {L}} </tex-math></inline-formula> bipartite subgraph with edge density <inline-formula> <tex-math notation="LaTeX">p>q </tex-math></inline-formula>. We characterize the statistical and computational barriers for this problem. Specifically, we derive information-theoretic lower bounds, and design and analyze optimal algorithms matching those bounds, in both the dense regime, where <inline-formula> <tex-math notation="LaTeX">p,q = \Theta \left ({1}\right) </tex-math></inline-formula>, and the sparse regime where <inline-formula> <tex-math notation="LaTeX">p,q = \Theta \left ({n^{-\alpha }}\right), \alpha \in \left ({0,2}\right] </tex-math></inline-formula>. We also consider the problem of testing in polynomial-time. As is customary in similar structured high-dimensional problems, our model undergoes an "easy-hard-impossible" phase transition and computational constraints penalize the statistical performance. To provide an evidence for this statistical computational gap, we prove computational lower bounds based on the low-degree conjecture, and show that the class of low-degree polynomials algorithms fail in the conjecturally hard region.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.2024.3382228