Planted Bipartite Graph Detection
We consider the task of detecting a hidden bipartite subgraph in a given random graph. This is formulated as a hypothesis testing problem, under the null hypothesis, the graph is a realization of an Erdős-Rényi random graph over n vertices with edge density q. Under the alternative, there exists a p...
Uloženo v:
| Vydáno v: | IEEE transactions on information theory Ročník 70; číslo 6; s. 4319 - 4334 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.06.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 0018-9448, 1557-9654 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We consider the task of detecting a hidden bipartite subgraph in a given random graph. This is formulated as a hypothesis testing problem, under the null hypothesis, the graph is a realization of an Erdős-Rényi random graph over n vertices with edge density q. Under the alternative, there exists a planted <inline-formula> <tex-math notation="LaTeX">k_{ \mathsf {R}} \times k_{ \mathsf {L}} </tex-math></inline-formula> bipartite subgraph with edge density <inline-formula> <tex-math notation="LaTeX">p>q </tex-math></inline-formula>. We characterize the statistical and computational barriers for this problem. Specifically, we derive information-theoretic lower bounds, and design and analyze optimal algorithms matching those bounds, in both the dense regime, where <inline-formula> <tex-math notation="LaTeX">p,q = \Theta \left ({1}\right) </tex-math></inline-formula>, and the sparse regime where <inline-formula> <tex-math notation="LaTeX">p,q = \Theta \left ({n^{-\alpha }}\right), \alpha \in \left ({0,2}\right] </tex-math></inline-formula>. We also consider the problem of testing in polynomial-time. As is customary in similar structured high-dimensional problems, our model undergoes an "easy-hard-impossible" phase transition and computational constraints penalize the statistical performance. To provide an evidence for this statistical computational gap, we prove computational lower bounds based on the low-degree conjecture, and show that the class of low-degree polynomials algorithms fail in the conjecturally hard region. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0018-9448 1557-9654 |
| DOI: | 10.1109/TIT.2024.3382228 |