Planted Bipartite Graph Detection

We consider the task of detecting a hidden bipartite subgraph in a given random graph. This is formulated as a hypothesis testing problem, under the null hypothesis, the graph is a realization of an Erdős-Rényi random graph over n vertices with edge density q. Under the alternative, there exists a p...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on information theory Ročník 70; číslo 6; s. 4319 - 4334
Hlavní autoři: Rotenberg, Asaf, Huleihel, Wasim, Shayevitz, Ofer
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.06.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0018-9448, 1557-9654
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract We consider the task of detecting a hidden bipartite subgraph in a given random graph. This is formulated as a hypothesis testing problem, under the null hypothesis, the graph is a realization of an Erdős-Rényi random graph over n vertices with edge density q. Under the alternative, there exists a planted <inline-formula> <tex-math notation="LaTeX">k_{ \mathsf {R}} \times k_{ \mathsf {L}} </tex-math></inline-formula> bipartite subgraph with edge density <inline-formula> <tex-math notation="LaTeX">p>q </tex-math></inline-formula>. We characterize the statistical and computational barriers for this problem. Specifically, we derive information-theoretic lower bounds, and design and analyze optimal algorithms matching those bounds, in both the dense regime, where <inline-formula> <tex-math notation="LaTeX">p,q = \Theta \left ({1}\right) </tex-math></inline-formula>, and the sparse regime where <inline-formula> <tex-math notation="LaTeX">p,q = \Theta \left ({n^{-\alpha }}\right), \alpha \in \left ({0,2}\right] </tex-math></inline-formula>. We also consider the problem of testing in polynomial-time. As is customary in similar structured high-dimensional problems, our model undergoes an "easy-hard-impossible" phase transition and computational constraints penalize the statistical performance. To provide an evidence for this statistical computational gap, we prove computational lower bounds based on the low-degree conjecture, and show that the class of low-degree polynomials algorithms fail in the conjecturally hard region.
AbstractList We consider the task of detecting a hidden bipartite subgraph in a given random graph. This is formulated as a hypothesis testing problem, under the null hypothesis, the graph is a realization of an Erdős-Rényi random graph over n vertices with edge density q. Under the alternative, there exists a planted [Formula Omitted] bipartite subgraph with edge density [Formula Omitted]. We characterize the statistical and computational barriers for this problem. Specifically, we derive information-theoretic lower bounds, and design and analyze optimal algorithms matching those bounds, in both the dense regime, where [Formula Omitted], and the sparse regime where [Formula Omitted]. We also consider the problem of testing in polynomial-time. As is customary in similar structured high-dimensional problems, our model undergoes an “easy-hard-impossible” phase transition and computational constraints penalize the statistical performance. To provide an evidence for this statistical computational gap, we prove computational lower bounds based on the low-degree conjecture, and show that the class of low-degree polynomials algorithms fail in the conjecturally hard region.
We consider the task of detecting a hidden bipartite subgraph in a given random graph. This is formulated as a hypothesis testing problem, under the null hypothesis, the graph is a realization of an Erdős-Rényi random graph over n vertices with edge density q. Under the alternative, there exists a planted <inline-formula> <tex-math notation="LaTeX">k_{ \mathsf {R}} \times k_{ \mathsf {L}} </tex-math></inline-formula> bipartite subgraph with edge density <inline-formula> <tex-math notation="LaTeX">p>q </tex-math></inline-formula>. We characterize the statistical and computational barriers for this problem. Specifically, we derive information-theoretic lower bounds, and design and analyze optimal algorithms matching those bounds, in both the dense regime, where <inline-formula> <tex-math notation="LaTeX">p,q = \Theta \left ({1}\right) </tex-math></inline-formula>, and the sparse regime where <inline-formula> <tex-math notation="LaTeX">p,q = \Theta \left ({n^{-\alpha }}\right), \alpha \in \left ({0,2}\right] </tex-math></inline-formula>. We also consider the problem of testing in polynomial-time. As is customary in similar structured high-dimensional problems, our model undergoes an "easy-hard-impossible" phase transition and computational constraints penalize the statistical performance. To provide an evidence for this statistical computational gap, we prove computational lower bounds based on the low-degree conjecture, and show that the class of low-degree polynomials algorithms fail in the conjecturally hard region.
Author Huleihel, Wasim
Shayevitz, Ofer
Rotenberg, Asaf
Author_xml – sequence: 1
  givenname: Asaf
  surname: Rotenberg
  fullname: Rotenberg, Asaf
  email: asaf.rotenberg@gmail.com
  organization: Department of Electrical Engineering-Systems, Tel Aviv University, Tel Aviv, Israel
– sequence: 2
  givenname: Wasim
  orcidid: 0000-0001-7500-1911
  surname: Huleihel
  fullname: Huleihel, Wasim
  email: wasimh@tauex.tau.ac.il
  organization: Department of Electrical Engineering-Systems, Tel Aviv University, Tel Aviv, Israel
– sequence: 3
  givenname: Ofer
  orcidid: 0000-0003-4321-0318
  surname: Shayevitz
  fullname: Shayevitz, Ofer
  email: ofersha@tauex.tau.ac.il
  organization: Department of Electrical Engineering-Systems, Tel Aviv University, Tel Aviv, Israel
BookMark eNpNkDtPwzAUhS1UJNLCzsBQxJzg92OEFkqlSjCE2XKcG5GqJMF2B_49qdKB6epI3zlX-uZo1vUdIHRLcEEINo_ltiwoprxgTFNK9QXKiBAqN1LwGcowJjo3nOsrNI9xP0YuCM3Q_cfBdQnq5XM7uJDaBMtNcMPXcg0JfGr77hpdNu4Q4eZ8F-jz9aVcveW798129bTLPeUi5bJRYIxzrKZcY0caron0TgKrPRUciFYaKuJrA9rUTEpVGyaxqjyuZMMlW6CHaXcI_c8RYrL7_hi68aVlWGhqmMF0pPBE-dDHGKCxQ2i_Xfi1BNuTCDuKsCcR9ixirNxNlRYA_uFcGaEZ-wN8uFlJ
CODEN IETTAW
Cites_doi 10.1214/14-AAP1080
10.1017/9781108616799.014
10.1109/FOCS46700.2020.00021
10.1145/2746539.2746600
10.1109/FOCS.2017.16
10.1016/0166-218X(94)00103-K
10.1137/1.9781611975482.170
10.1109/ALLERTON.2015.7447070
10.1080/00018732.2016.1211393
10.1145/3055399.3055485
10.1017/S0305004100058655
10.1214/19-AOS1860
10.1109/FOCS.2016.53
10.1073/pnas.0703685104
10.1109/FOCS.2017.42
10.1017/CBO9781139814782
10.1214/22-AOS2179
10.1214/15-AOS1369
10.1017/S096354831300045X
10.1002/(SICI)1098-2418(199810/12)13:3/4<457::AID-RSA14>3.0.CO;2-W
10.1007/978-3-030-97127-4_1
10.1145/3046674
10.1214/14-AOS1208
10.1214/14-AOS1300
10.1214/16-AOS1519
10.1214/15-AOS1310
10.1109/FOCS.2017.72
10.1145/3178538
10.1142/9789813272880_0186
10.1103/PhysRevE.99.042109
10.1109/TSIPN.2022.3211208
10.1145/3357713.3384329
10.1109/FOCS52979.2021.00048
10.1145/3357713.3384319
10.1287/opre.2019.1886
10.3150/12-BEJ470
10.1017/CBO9780511984068
10.1145/2746539.2746577
10.1109/ALLERTON.2016.7852287
10.4171/PM/2014
10.1002/rsa.3240030402
10.1093/gigascience/giy014
10.1214/16-AOS1488
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TIT.2024.3382228
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1557-9654
EndPage 4334
ExternalDocumentID 10_1109_TIT_2024_3382228
10479583
Genre orig-research
GrantInformation_xml – fundername: Israel Science Foundation
  grantid: 1734/21
  funderid: 10.13039/501100003977
– fundername: Israel Science Foundation
  grantid: 1766/22
  funderid: 10.13039/501100003977
– fundername: Israel Science Foundation
  grantid: 1734/21; 1766/22
  funderid: 10.13039/501100003977
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACGOD
ACIWK
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
VJK
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c245t-6f7e99aa3d2480a1f4816ca6e3dc254e1878eb1cd9e89d3667d93607bc0b6f463
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001230181100037&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9448
IngestDate Sun Nov 09 06:13:01 EST 2025
Sat Nov 29 03:31:52 EST 2025
Wed Aug 27 02:05:16 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c245t-6f7e99aa3d2480a1f4816ca6e3dc254e1878eb1cd9e89d3667d93607bc0b6f463
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4321-0318
0000-0001-7500-1911
PQID 3058293902
PQPubID 36024
PageCount 16
ParticipantIDs proquest_journals_3058293902
crossref_primary_10_1109_TIT_2024_3382228
ieee_primary_10479583
PublicationCentury 2000
PublicationDate 2024-06-01
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on information theory
PublicationTitleAbbrev TIT
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
Kolar (ref54)
ref57
ref56
ref14
Brennan (ref34); 99
ref58
ref53
ref52
ref55
ref17
ref19
ref18
Abbe (ref23) 2017; 18
ref51
ref50
Hopkins (ref15) 2018
ref46
ref45
ref48
Brennan (ref10); 75
ref47
ref42
ref41
ref44
ref43
Erdos (ref12) 1960; 5
ref49
Deshpande (ref37); 40
ref7
ref4
ref3
ref6
ref5
ref40
Wang (ref31)
ref35
ref30
ref33
ref32
ref2
ref1
Massoulie (ref11); 99
ref39
Berthet (ref22); 30
ref38
Chen (ref9) 2016; 17
Bandeira (ref16); 151
ref24
ref26
ref25
ref20
ref21
ref28
ref27
ref29
Brennan (ref36); 125
Hajek (ref8); 40
References_xml – ident: ref21
  doi: 10.1214/14-AAP1080
– ident: ref35
  doi: 10.1017/9781108616799.014
– ident: ref24
  doi: 10.1017/9781108616799.014
– ident: ref18
  doi: 10.1109/FOCS46700.2020.00021
– ident: ref38
  doi: 10.1145/2746539.2746600
– volume: 18
  start-page: 6446
  issue: 1
  year: 2017
  ident: ref23
  article-title: Community detection and stochastic block models: Recent developments
  publication-title: J. Mach. Learn. Res.
– volume: 30
  start-page: 1046
  volume-title: Proc. 26th Annu. Conf. Learn. Theory
  ident: ref22
  article-title: Complexity theoretic lower bounds for sparse principal component detection
– volume: 125
  start-page: 648
  volume-title: Proc. 33rd Conf. Learn. Theory
  ident: ref36
  article-title: Reducibility and statistical-computational gaps from secret leakage
– ident: ref46
  doi: 10.1109/FOCS.2017.16
– ident: ref3
  doi: 10.1016/0166-218X(94)00103-K
– ident: ref47
  doi: 10.1137/1.9781611975482.170
– ident: ref49
  doi: 10.1109/ALLERTON.2015.7447070
– ident: ref48
  doi: 10.1080/00018732.2016.1211393
– volume: 99
  start-page: 2341
  volume-title: Proc. 32nd Conf. Learn. Theory
  ident: ref11
  article-title: Planting trees in graphs, and finding them back
– volume: 99
  start-page: 417
  volume-title: Proc. 32nd Conf. Learn. Theory
  ident: ref34
  article-title: Universality of computational lower bounds for submatrix detection
– ident: ref40
  doi: 10.1145/3055399.3055485
– ident: ref13
  doi: 10.1017/S0305004100058655
– ident: ref1
  doi: 10.1214/19-AOS1860
– ident: ref5
  doi: 10.1109/FOCS.2016.53
– ident: ref51
  doi: 10.1073/pnas.0703685104
– ident: ref14
  doi: 10.1109/FOCS.2017.42
– ident: ref57
  doi: 10.1017/CBO9781139814782
– ident: ref58
  doi: 10.1214/22-AOS2179
– ident: ref32
  doi: 10.1214/15-AOS1369
– ident: ref6
  doi: 10.1017/S096354831300045X
– ident: ref4
  doi: 10.1002/(SICI)1098-2418(199810/12)13:3/4<457::AID-RSA14>3.0.CO;2-W
– ident: ref56
  doi: 10.1007/978-3-030-97127-4_1
– ident: ref7
  doi: 10.1145/3046674
– ident: ref20
  doi: 10.1214/14-AOS1208
– ident: ref28
  doi: 10.1214/14-AOS1300
– year: 2018
  ident: ref15
  article-title: Statistical inference and the sum of squares method
– ident: ref33
  doi: 10.1214/16-AOS1519
– ident: ref30
  doi: 10.1214/15-AOS1310
– ident: ref43
  doi: 10.1109/FOCS.2017.72
– ident: ref41
  doi: 10.1145/3178538
– ident: ref42
  doi: 10.1142/9789813272880_0186
– ident: ref52
  doi: 10.1103/PhysRevE.99.042109
– volume: 5
  start-page: 1761
  year: 1960
  ident: ref12
  article-title: On the evolution of random graphs
  publication-title: Publication Math. Inst. Hung. Acad. Sci.
– volume: 151
  start-page: 1
  volume-title: Proc. 11th Innov. Theor. Comput. Sci. Conf.
  ident: ref16
  article-title: Computational hardness of certifying bounds on constrained PCA problems
– ident: ref19
  doi: 10.1109/TSIPN.2022.3211208
– ident: ref17
  doi: 10.1145/3357713.3384329
– ident: ref39
  doi: 10.1109/FOCS52979.2021.00048
– ident: ref44
  doi: 10.1145/3357713.3384319
– volume: 17
  start-page: 1
  issue: 27
  year: 2016
  ident: ref9
  article-title: Statistical-computational tradeoffs in planted problems and submatrix localization with a growing number of clusters and submatrices
  publication-title: J. Mach. Learn. Res.
– ident: ref25
  doi: 10.1287/opre.2019.1886
– volume: 40
  start-page: 523
  volume-title: Proc. 28th Conf. Learn. Theory
  ident: ref37
  article-title: Improved sum-of-squares lower bounds for hidden clique and hidden submatrix problems
– start-page: 3819
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref31
  article-title: Average-case hardness of RIP certification
– ident: ref55
  doi: 10.3150/12-BEJ470
– ident: ref26
  doi: 10.1017/CBO9780511984068
– volume: 75
  start-page: 48
  volume-title: Proc. 31st Conf. Learn. Theory
  ident: ref10
  article-title: Reducibility and computational lower bounds for problems with planted sparse structure
– ident: ref45
  doi: 10.1145/2746539.2746577
– ident: ref50
  doi: 10.1109/ALLERTON.2016.7852287
– ident: ref53
  doi: 10.4171/PM/2014
– ident: ref2
  doi: 10.1002/rsa.3240030402
– start-page: 909
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref54
  article-title: Minimax localization of structural information in large noisy matrices
– ident: ref27
  doi: 10.1093/gigascience/giy014
– ident: ref29
  doi: 10.1214/16-AOS1488
– volume: 40
  start-page: 899
  volume-title: Proc. 28th Conf. Learn. Theory
  ident: ref8
  article-title: Computational lower bounds for community detection on random graphs
SSID ssj0014512
Score 2.4517279
Snippet We consider the task of detecting a hidden bipartite subgraph in a given random graph. This is formulated as a hypothesis testing problem, under the null...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 4319
SubjectTerms Algorithms
Apexes
Bipartite graph
Computational modeling
Density
Detection
Graph theory
hidden structures
Hypotheses
Hypothesis testing
Image edge detection
Information theory
Lower bounds
Null hypothesis
Phase transitions
Polynomials
Stars
statistical and computational limits
statistical inference
Task analysis
Testing
Title Planted Bipartite Graph Detection
URI https://ieeexplore.ieee.org/document/10479583
https://www.proquest.com/docview/3058293902
Volume 70
WOSCitedRecordID wos001230181100037&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1557-9654
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014512
  issn: 0018-9448
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED7RigEGCqWIQkFBYmFIm6cfI68CS8VQpG5RYp-lLm3Vpvx-zk6CihADW4bEir7znb_zvQButcyFQmP8WLLET1iMfs5Q-EjijiLFUyO1GzbBJxMxm8n3uljd1cIgoks-w6F9dLF8vVRbe1U2sm0FZCriFrQ4Z1Wx1nfIIEnDqjV4SBpMTkcTkwzkaPo2JU8wSobkj9kbjx9nkBuq8ssSu-Nl3Pnnjx3DUc0jvftK8Cewh4sudJoZDV6tsl043Gk4eAo3dkYRcUzvYb6ye6ZE78V2rPaesHQ5WYsefIyfp4-vfj0kwVdRkpY-MxylzPNYR4kI8tAkImSK8I61IucPQ8EF2WOlJQqpY8a4ljELeKGCghkSzhm0F8sFnoMnlCgiRRzQcEG8CouiCApjddQoZgzvw10DW7aqemFkzocIZEYQZxbirIa4Dz0L0857FUJ9GDRAZ7W2bDKyOYJohwyiiz8-u4QDu3qVozWAdrne4hXsq89yvllfu43wBQz7r3w
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BQQIGCqWIQoEgsTCkzcNx7JFXaUWpGILULUqcs9QlrdqU34_tJKgIMbBlSOToO9_5O98L4DbjCRMope1zSmxCfbQTisxGJW7PE2EgeWaGTYSTCZtO-XtVrG5qYRDRJJ9hTz-aWH42F2t9VdbXbQV4wPxt2AkI8ZyyXOs7aEACt2wO7iodVm5HHZV0eD8aRcoX9EhPeWT6zuPHKWTGqvyyxeaAGTT_-WtHcFgxSeu-FP0xbGHegmY9pcGqlLYFBxstB0_gRk8pUizTepgt9K4p0HrRPautJyxMVlbeho_Bc_Q4tKsxCbbwSFDYVIbIeZL4mUeYk7iSMJcKhbifCeX-octCpiyyyDgynvmUhhn3qROmwkmpVOI5hUY-z_EMLCZY6gnFAmXIFLPCNE2dVGotlYJKGXbgroYtXpTdMGLjRTg8VhDHGuK4grgDbQ3TxnslQh3o1kDHlb6sYmV1mCIe3PHO__jsGvaG0ds4Ho8mrxewr1cqM7a60CiWa7yEXfFZzFbLK7MpvgBfxbLD
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Planted+Bipartite+Graph+Detection&rft.jtitle=IEEE+transactions+on+information+theory&rft.au=Rotenberg%2C+Asaf&rft.au=Huleihel%2C+Wasim&rft.au=Shayevitz%2C+Ofer&rft.date=2024-06-01&rft.pub=IEEE&rft.issn=0018-9448&rft.volume=70&rft.issue=6&rft.spage=4319&rft.epage=4334&rft_id=info:doi/10.1109%2FTIT.2024.3382228&rft.externalDocID=10479583
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9448&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9448&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9448&client=summon