Planted Bipartite Graph Detection
We consider the task of detecting a hidden bipartite subgraph in a given random graph. This is formulated as a hypothesis testing problem, under the null hypothesis, the graph is a realization of an Erdős-Rényi random graph over n vertices with edge density q. Under the alternative, there exists a p...
Uloženo v:
| Vydáno v: | IEEE transactions on information theory Ročník 70; číslo 6; s. 4319 - 4334 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.06.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 0018-9448, 1557-9654 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | We consider the task of detecting a hidden bipartite subgraph in a given random graph. This is formulated as a hypothesis testing problem, under the null hypothesis, the graph is a realization of an Erdős-Rényi random graph over n vertices with edge density q. Under the alternative, there exists a planted <inline-formula> <tex-math notation="LaTeX">k_{ \mathsf {R}} \times k_{ \mathsf {L}} </tex-math></inline-formula> bipartite subgraph with edge density <inline-formula> <tex-math notation="LaTeX">p>q </tex-math></inline-formula>. We characterize the statistical and computational barriers for this problem. Specifically, we derive information-theoretic lower bounds, and design and analyze optimal algorithms matching those bounds, in both the dense regime, where <inline-formula> <tex-math notation="LaTeX">p,q = \Theta \left ({1}\right) </tex-math></inline-formula>, and the sparse regime where <inline-formula> <tex-math notation="LaTeX">p,q = \Theta \left ({n^{-\alpha }}\right), \alpha \in \left ({0,2}\right] </tex-math></inline-formula>. We also consider the problem of testing in polynomial-time. As is customary in similar structured high-dimensional problems, our model undergoes an "easy-hard-impossible" phase transition and computational constraints penalize the statistical performance. To provide an evidence for this statistical computational gap, we prove computational lower bounds based on the low-degree conjecture, and show that the class of low-degree polynomials algorithms fail in the conjecturally hard region. |
|---|---|
| AbstractList | We consider the task of detecting a hidden bipartite subgraph in a given random graph. This is formulated as a hypothesis testing problem, under the null hypothesis, the graph is a realization of an Erdős-Rényi random graph over n vertices with edge density q. Under the alternative, there exists a planted [Formula Omitted] bipartite subgraph with edge density [Formula Omitted]. We characterize the statistical and computational barriers for this problem. Specifically, we derive information-theoretic lower bounds, and design and analyze optimal algorithms matching those bounds, in both the dense regime, where [Formula Omitted], and the sparse regime where [Formula Omitted]. We also consider the problem of testing in polynomial-time. As is customary in similar structured high-dimensional problems, our model undergoes an “easy-hard-impossible” phase transition and computational constraints penalize the statistical performance. To provide an evidence for this statistical computational gap, we prove computational lower bounds based on the low-degree conjecture, and show that the class of low-degree polynomials algorithms fail in the conjecturally hard region. We consider the task of detecting a hidden bipartite subgraph in a given random graph. This is formulated as a hypothesis testing problem, under the null hypothesis, the graph is a realization of an Erdős-Rényi random graph over n vertices with edge density q. Under the alternative, there exists a planted <inline-formula> <tex-math notation="LaTeX">k_{ \mathsf {R}} \times k_{ \mathsf {L}} </tex-math></inline-formula> bipartite subgraph with edge density <inline-formula> <tex-math notation="LaTeX">p>q </tex-math></inline-formula>. We characterize the statistical and computational barriers for this problem. Specifically, we derive information-theoretic lower bounds, and design and analyze optimal algorithms matching those bounds, in both the dense regime, where <inline-formula> <tex-math notation="LaTeX">p,q = \Theta \left ({1}\right) </tex-math></inline-formula>, and the sparse regime where <inline-formula> <tex-math notation="LaTeX">p,q = \Theta \left ({n^{-\alpha }}\right), \alpha \in \left ({0,2}\right] </tex-math></inline-formula>. We also consider the problem of testing in polynomial-time. As is customary in similar structured high-dimensional problems, our model undergoes an "easy-hard-impossible" phase transition and computational constraints penalize the statistical performance. To provide an evidence for this statistical computational gap, we prove computational lower bounds based on the low-degree conjecture, and show that the class of low-degree polynomials algorithms fail in the conjecturally hard region. |
| Author | Huleihel, Wasim Shayevitz, Ofer Rotenberg, Asaf |
| Author_xml | – sequence: 1 givenname: Asaf surname: Rotenberg fullname: Rotenberg, Asaf email: asaf.rotenberg@gmail.com organization: Department of Electrical Engineering-Systems, Tel Aviv University, Tel Aviv, Israel – sequence: 2 givenname: Wasim orcidid: 0000-0001-7500-1911 surname: Huleihel fullname: Huleihel, Wasim email: wasimh@tauex.tau.ac.il organization: Department of Electrical Engineering-Systems, Tel Aviv University, Tel Aviv, Israel – sequence: 3 givenname: Ofer orcidid: 0000-0003-4321-0318 surname: Shayevitz fullname: Shayevitz, Ofer email: ofersha@tauex.tau.ac.il organization: Department of Electrical Engineering-Systems, Tel Aviv University, Tel Aviv, Israel |
| BookMark | eNpNkDtPwzAUhS1UJNLCzsBQxJzg92OEFkqlSjCE2XKcG5GqJMF2B_49qdKB6epI3zlX-uZo1vUdIHRLcEEINo_ltiwoprxgTFNK9QXKiBAqN1LwGcowJjo3nOsrNI9xP0YuCM3Q_cfBdQnq5XM7uJDaBMtNcMPXcg0JfGr77hpdNu4Q4eZ8F-jz9aVcveW798129bTLPeUi5bJRYIxzrKZcY0caron0TgKrPRUciFYaKuJrA9rUTEpVGyaxqjyuZMMlW6CHaXcI_c8RYrL7_hi68aVlWGhqmMF0pPBE-dDHGKCxQ2i_Xfi1BNuTCDuKsCcR9ixirNxNlRYA_uFcGaEZ-wN8uFlJ |
| CODEN | IETTAW |
| Cites_doi | 10.1214/14-AAP1080 10.1017/9781108616799.014 10.1109/FOCS46700.2020.00021 10.1145/2746539.2746600 10.1109/FOCS.2017.16 10.1016/0166-218X(94)00103-K 10.1137/1.9781611975482.170 10.1109/ALLERTON.2015.7447070 10.1080/00018732.2016.1211393 10.1145/3055399.3055485 10.1017/S0305004100058655 10.1214/19-AOS1860 10.1109/FOCS.2016.53 10.1073/pnas.0703685104 10.1109/FOCS.2017.42 10.1017/CBO9781139814782 10.1214/22-AOS2179 10.1214/15-AOS1369 10.1017/S096354831300045X 10.1002/(SICI)1098-2418(199810/12)13:3/4<457::AID-RSA14>3.0.CO;2-W 10.1007/978-3-030-97127-4_1 10.1145/3046674 10.1214/14-AOS1208 10.1214/14-AOS1300 10.1214/16-AOS1519 10.1214/15-AOS1310 10.1109/FOCS.2017.72 10.1145/3178538 10.1142/9789813272880_0186 10.1103/PhysRevE.99.042109 10.1109/TSIPN.2022.3211208 10.1145/3357713.3384329 10.1109/FOCS52979.2021.00048 10.1145/3357713.3384319 10.1287/opre.2019.1886 10.3150/12-BEJ470 10.1017/CBO9780511984068 10.1145/2746539.2746577 10.1109/ALLERTON.2016.7852287 10.4171/PM/2014 10.1002/rsa.3240030402 10.1093/gigascience/giy014 10.1214/16-AOS1488 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TIT.2024.3382228 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1557-9654 |
| EndPage | 4334 |
| ExternalDocumentID | 10_1109_TIT_2024_3382228 10479583 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Israel Science Foundation grantid: 1734/21 funderid: 10.13039/501100003977 – fundername: Israel Science Foundation grantid: 1766/22 funderid: 10.13039/501100003977 – fundername: Israel Science Foundation grantid: 1734/21; 1766/22 funderid: 10.13039/501100003977 |
| GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACGOD ACIWK AENEX AETEA AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 VH1 VJK AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c245t-6f7e99aa3d2480a1f4816ca6e3dc254e1878eb1cd9e89d3667d93607bc0b6f463 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001230181100037&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0018-9448 |
| IngestDate | Sun Nov 09 06:13:01 EST 2025 Sat Nov 29 03:31:52 EST 2025 Wed Aug 27 02:05:16 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c245t-6f7e99aa3d2480a1f4816ca6e3dc254e1878eb1cd9e89d3667d93607bc0b6f463 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-4321-0318 0000-0001-7500-1911 |
| PQID | 3058293902 |
| PQPubID | 36024 |
| PageCount | 16 |
| ParticipantIDs | proquest_journals_3058293902 crossref_primary_10_1109_TIT_2024_3382228 ieee_primary_10479583 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-06-01 |
| PublicationDateYYYYMMDD | 2024-06-01 |
| PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on information theory |
| PublicationTitleAbbrev | TIT |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 Kolar (ref54) ref57 ref56 ref14 Brennan (ref34); 99 ref58 ref53 ref52 ref55 ref17 ref19 ref18 Abbe (ref23) 2017; 18 ref51 ref50 Hopkins (ref15) 2018 ref46 ref45 ref48 Brennan (ref10); 75 ref47 ref42 ref41 ref44 ref43 Erdos (ref12) 1960; 5 ref49 Deshpande (ref37); 40 ref7 ref4 ref3 ref6 ref5 ref40 Wang (ref31) ref35 ref30 ref33 ref32 ref2 ref1 Massoulie (ref11); 99 ref39 Berthet (ref22); 30 ref38 Chen (ref9) 2016; 17 Bandeira (ref16); 151 ref24 ref26 ref25 ref20 ref21 ref28 ref27 ref29 Brennan (ref36); 125 Hajek (ref8); 40 |
| References_xml | – ident: ref21 doi: 10.1214/14-AAP1080 – ident: ref35 doi: 10.1017/9781108616799.014 – ident: ref24 doi: 10.1017/9781108616799.014 – ident: ref18 doi: 10.1109/FOCS46700.2020.00021 – ident: ref38 doi: 10.1145/2746539.2746600 – volume: 18 start-page: 6446 issue: 1 year: 2017 ident: ref23 article-title: Community detection and stochastic block models: Recent developments publication-title: J. Mach. Learn. Res. – volume: 30 start-page: 1046 volume-title: Proc. 26th Annu. Conf. Learn. Theory ident: ref22 article-title: Complexity theoretic lower bounds for sparse principal component detection – volume: 125 start-page: 648 volume-title: Proc. 33rd Conf. Learn. Theory ident: ref36 article-title: Reducibility and statistical-computational gaps from secret leakage – ident: ref46 doi: 10.1109/FOCS.2017.16 – ident: ref3 doi: 10.1016/0166-218X(94)00103-K – ident: ref47 doi: 10.1137/1.9781611975482.170 – ident: ref49 doi: 10.1109/ALLERTON.2015.7447070 – ident: ref48 doi: 10.1080/00018732.2016.1211393 – volume: 99 start-page: 2341 volume-title: Proc. 32nd Conf. Learn. Theory ident: ref11 article-title: Planting trees in graphs, and finding them back – volume: 99 start-page: 417 volume-title: Proc. 32nd Conf. Learn. Theory ident: ref34 article-title: Universality of computational lower bounds for submatrix detection – ident: ref40 doi: 10.1145/3055399.3055485 – ident: ref13 doi: 10.1017/S0305004100058655 – ident: ref1 doi: 10.1214/19-AOS1860 – ident: ref5 doi: 10.1109/FOCS.2016.53 – ident: ref51 doi: 10.1073/pnas.0703685104 – ident: ref14 doi: 10.1109/FOCS.2017.42 – ident: ref57 doi: 10.1017/CBO9781139814782 – ident: ref58 doi: 10.1214/22-AOS2179 – ident: ref32 doi: 10.1214/15-AOS1369 – ident: ref6 doi: 10.1017/S096354831300045X – ident: ref4 doi: 10.1002/(SICI)1098-2418(199810/12)13:3/4<457::AID-RSA14>3.0.CO;2-W – ident: ref56 doi: 10.1007/978-3-030-97127-4_1 – ident: ref7 doi: 10.1145/3046674 – ident: ref20 doi: 10.1214/14-AOS1208 – ident: ref28 doi: 10.1214/14-AOS1300 – year: 2018 ident: ref15 article-title: Statistical inference and the sum of squares method – ident: ref33 doi: 10.1214/16-AOS1519 – ident: ref30 doi: 10.1214/15-AOS1310 – ident: ref43 doi: 10.1109/FOCS.2017.72 – ident: ref41 doi: 10.1145/3178538 – ident: ref42 doi: 10.1142/9789813272880_0186 – ident: ref52 doi: 10.1103/PhysRevE.99.042109 – volume: 5 start-page: 1761 year: 1960 ident: ref12 article-title: On the evolution of random graphs publication-title: Publication Math. Inst. Hung. Acad. Sci. – volume: 151 start-page: 1 volume-title: Proc. 11th Innov. Theor. Comput. Sci. Conf. ident: ref16 article-title: Computational hardness of certifying bounds on constrained PCA problems – ident: ref19 doi: 10.1109/TSIPN.2022.3211208 – ident: ref17 doi: 10.1145/3357713.3384329 – ident: ref39 doi: 10.1109/FOCS52979.2021.00048 – ident: ref44 doi: 10.1145/3357713.3384319 – volume: 17 start-page: 1 issue: 27 year: 2016 ident: ref9 article-title: Statistical-computational tradeoffs in planted problems and submatrix localization with a growing number of clusters and submatrices publication-title: J. Mach. Learn. Res. – ident: ref25 doi: 10.1287/opre.2019.1886 – volume: 40 start-page: 523 volume-title: Proc. 28th Conf. Learn. Theory ident: ref37 article-title: Improved sum-of-squares lower bounds for hidden clique and hidden submatrix problems – start-page: 3819 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref31 article-title: Average-case hardness of RIP certification – ident: ref55 doi: 10.3150/12-BEJ470 – ident: ref26 doi: 10.1017/CBO9780511984068 – volume: 75 start-page: 48 volume-title: Proc. 31st Conf. Learn. Theory ident: ref10 article-title: Reducibility and computational lower bounds for problems with planted sparse structure – ident: ref45 doi: 10.1145/2746539.2746577 – ident: ref50 doi: 10.1109/ALLERTON.2016.7852287 – ident: ref53 doi: 10.4171/PM/2014 – ident: ref2 doi: 10.1002/rsa.3240030402 – start-page: 909 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref54 article-title: Minimax localization of structural information in large noisy matrices – ident: ref27 doi: 10.1093/gigascience/giy014 – ident: ref29 doi: 10.1214/16-AOS1488 – volume: 40 start-page: 899 volume-title: Proc. 28th Conf. Learn. Theory ident: ref8 article-title: Computational lower bounds for community detection on random graphs |
| SSID | ssj0014512 |
| Score | 2.4516482 |
| Snippet | We consider the task of detecting a hidden bipartite subgraph in a given random graph. This is formulated as a hypothesis testing problem, under the null... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 4319 |
| SubjectTerms | Algorithms Apexes Bipartite graph Computational modeling Density Detection Graph theory hidden structures Hypotheses Hypothesis testing Image edge detection Information theory Lower bounds Null hypothesis Phase transitions Polynomials Stars statistical and computational limits statistical inference Task analysis Testing |
| Title | Planted Bipartite Graph Detection |
| URI | https://ieeexplore.ieee.org/document/10479583 https://www.proquest.com/docview/3058293902 |
| Volume | 70 |
| WOSCitedRecordID | wos001230181100037&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1557-9654 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014512 issn: 0018-9448 databaseCode: RIE dateStart: 19630101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LS8MwGP_Q4UEPTufE6ZQKXjx0S5s0j6OvqSDDw4TdSpt8hV22sXX-_SZpKxPx4K2UtpRfvtcv-R4AN4IUzIqCCmmsMbT-OArzhLp8B5HFikuU6Ff6TYzHcjpV73Wxuq-FQUSffIYDd-nP8s1Cb9xW2dC1FVCJpLuwKwSvirW-jwxYElWtwSOrwZZ0NGeSRA0nrxPLBGM2sHzM7Xj88EF-qMovS-zdy6j9zx87gsM6jgzuqoU_hh2cd6DdzGgIapXtwMFWw8ETuHYzimyMGdzPlk5mSgyeXcfq4BFLn5M178LH6Gny8BLWQxJCHbOkDHkhUKksoyZmkmRRwWTEdcaRGm3JH0ZSSGuPtVEolaGcC6MoJyLXJOcF4_QUWvPFHM8gkAXBxCipLQViOSZKIdUJjY29rUghe3DbwJYuq14YqecQRKUW4tRBnNYQ96DrYNp6rkKoB_0G6LTWlnVqbY60YYci8fkfr13Avvt6laPVh1a52uAl7OnPcrZeXXlB-ALVW63M |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT4MwFH_RaaIenM4Zp1Mx8eKBrVAo7dGvucW5eMBkNwLlkezClo3599sWMDPGgzdCaEp-fZ99XwC3Ack8RQrCpq5EW-ljx058qvMdgtgVjCNHc9LjYDLh06l4r4rVTS0MIprkM-zpRxPLT-dyra_K-rqtgPA53YYdX-1AynKt76CB5ztlc3BH8bByO-qoJBH9cBQqX9D1esoj03ceP7SQGavySxYbBTNo_vPXjuCwsiSt-_Loj2EL8xY06ykNVsW0LTjYaDl4Ajd6SpGyMq2H2UJTTYHWi-5ZbT1hYbKy8jZ8DJ7Dx6FdjUmwpev5hc2yAIWIY5q6Hiexk3ncYTJmSFOp3D90eMCVRJapQC5SyliQCspIkEiSsMxj9BQa-TzHM7B4RtBPBZfKCfIS9IVAKn3qpuq1IBnvwF0NW7Qou2FExosgIlIQRxriqIK4A20N08Z3JUId6NZARxW_rCIldbgyPARxz_9Ydg17w_BtHI1Hk9cL2Nc7lRlbXWgUyzVewq78LGar5ZUhii8RjLET |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Planted+Bipartite+Graph+Detection&rft.jtitle=IEEE+transactions+on+information+theory&rft.au=Rotenberg%2C+Asaf&rft.au=Huleihel%2C+Wasim&rft.au=Shayevitz%2C+Ofer&rft.date=2024-06-01&rft.issn=0018-9448&rft.eissn=1557-9654&rft.volume=70&rft.issue=6&rft.spage=4319&rft.epage=4334&rft_id=info:doi/10.1109%2FTIT.2024.3382228&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIT_2024_3382228 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9448&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9448&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9448&client=summon |