Addendum to “Factoring skew polynomials over Hamilton's quaternion algebra and the complex numbers” [J. Algebra 427 (2015) 20–29]
Let D be the quaternion division algebra over a real closed field F. Then every non-constant polynomial in a skew-polynomial ring D[t;σ,δ] decomposes into a product of linear factors, and thus has a zero in D. This improves [8, Theorem 2].
Gespeichert in:
| Veröffentlicht in: | Journal of algebra Jg. 440; S. 639 - 641 |
|---|---|
| 1. Verfasser: | |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Inc
30.07.2015
|
| Schlagworte: | |
| ISSN: | 0021-8693, 1090-266X |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Let D be the quaternion division algebra over a real closed field F. Then every non-constant polynomial in a skew-polynomial ring D[t;σ,δ] decomposes into a product of linear factors, and thus has a zero in D. This improves [8, Theorem 2]. |
|---|---|
| Bibliographie: | addendum |
| ISSN: | 0021-8693 1090-266X |
| DOI: | 10.1016/j.jalgebra.2015.06.014 |