Addendum to “Factoring skew polynomials over Hamilton's quaternion algebra and the complex numbers” [J. Algebra 427 (2015) 20–29]

Let D be the quaternion division algebra over a real closed field F. Then every non-constant polynomial in a skew-polynomial ring D[t;σ,δ] decomposes into a product of linear factors, and thus has a zero in D. This improves [8, Theorem 2].

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of algebra Jg. 440; S. 639 - 641
1. Verfasser: Pumplün, S.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Inc 30.07.2015
Schlagworte:
ISSN:0021-8693, 1090-266X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let D be the quaternion division algebra over a real closed field F. Then every non-constant polynomial in a skew-polynomial ring D[t;σ,δ] decomposes into a product of linear factors, and thus has a zero in D. This improves [8, Theorem 2].
Bibliographie:addendum
ISSN:0021-8693
1090-266X
DOI:10.1016/j.jalgebra.2015.06.014