Addendum to “Factoring skew polynomials over Hamilton's quaternion algebra and the complex numbers” [J. Algebra 427 (2015) 20–29]

Let D be the quaternion division algebra over a real closed field F. Then every non-constant polynomial in a skew-polynomial ring D[t;σ,δ] decomposes into a product of linear factors, and thus has a zero in D. This improves [8, Theorem 2].

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of algebra Ročník 440; s. 639 - 641
Hlavní autor: Pumplün, S.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Inc 30.07.2015
Témata:
ISSN:0021-8693, 1090-266X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Let D be the quaternion division algebra over a real closed field F. Then every non-constant polynomial in a skew-polynomial ring D[t;σ,δ] decomposes into a product of linear factors, and thus has a zero in D. This improves [8, Theorem 2].
Bibliografie:addendum
ISSN:0021-8693
1090-266X
DOI:10.1016/j.jalgebra.2015.06.014