Addendum to “Factoring skew polynomials over Hamilton's quaternion algebra and the complex numbers” [J. Algebra 427 (2015) 20–29]
Let D be the quaternion division algebra over a real closed field F. Then every non-constant polynomial in a skew-polynomial ring D[t;σ,δ] decomposes into a product of linear factors, and thus has a zero in D. This improves [8, Theorem 2].
Uloženo v:
| Vydáno v: | Journal of algebra Ročník 440; s. 639 - 641 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Inc
30.07.2015
|
| Témata: | |
| ISSN: | 0021-8693, 1090-266X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Let D be the quaternion division algebra over a real closed field F. Then every non-constant polynomial in a skew-polynomial ring D[t;σ,δ] decomposes into a product of linear factors, and thus has a zero in D. This improves [8, Theorem 2]. |
|---|---|
| Bibliografie: | addendum |
| ISSN: | 0021-8693 1090-266X |
| DOI: | 10.1016/j.jalgebra.2015.06.014 |