Recent approaches to global optimization problems through Particle Swarm Optimization

This paper presents an overview of our most recent results concerning the Particle Swarm Optimization (PSO) method. Techniques for the alleviation of local minima, and for detecting multiple minimizers are described. Moreover, results on the ability of the PSO in tackling Multiobjective, Minimax, In...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Natural computing Ročník 1; číslo 2-3; s. 235 - 306
Hlavní autori: Parsopoulos, K.E., Vrahatis, M.N.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Dordrecht Springer Nature B.V 01.06.2002
Predmet:
ISSN:1567-7818, 1572-9796
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:This paper presents an overview of our most recent results concerning the Particle Swarm Optimization (PSO) method. Techniques for the alleviation of local minima, and for detecting multiple minimizers are described. Moreover, results on the ability of the PSO in tackling Multiobjective, Minimax, Integer Programming and super(1) errors-in-variables problems, as well as problems in noisy and continuously changing environments, are reported. Finally, a Composite PSO, in which the heuristic parameters of PSO are controlled by a Differential Evolution algorithm during the optimization, is described, and results for many well-known and widely used test functions are given.
Bibliografia:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ISSN:1567-7818
1572-9796
DOI:10.1023/A:1016568309421