Recent approaches to global optimization problems through Particle Swarm Optimization

This paper presents an overview of our most recent results concerning the Particle Swarm Optimization (PSO) method. Techniques for the alleviation of local minima, and for detecting multiple minimizers are described. Moreover, results on the ability of the PSO in tackling Multiobjective, Minimax, In...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Natural computing Ročník 1; číslo 2-3; s. 235 - 306
Hlavní autoři: Parsopoulos, K.E., Vrahatis, M.N.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Dordrecht Springer Nature B.V 01.06.2002
Témata:
ISSN:1567-7818, 1572-9796
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper presents an overview of our most recent results concerning the Particle Swarm Optimization (PSO) method. Techniques for the alleviation of local minima, and for detecting multiple minimizers are described. Moreover, results on the ability of the PSO in tackling Multiobjective, Minimax, Integer Programming and super(1) errors-in-variables problems, as well as problems in noisy and continuously changing environments, are reported. Finally, a Composite PSO, in which the heuristic parameters of PSO are controlled by a Differential Evolution algorithm during the optimization, is described, and results for many well-known and widely used test functions are given.
Bibliografie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ISSN:1567-7818
1572-9796
DOI:10.1023/A:1016568309421