Sequential Quadratic Programming with Penalization of the Displacement
In this paper we study the convergence of a sequential quadratic programming algorithm for, the nonlinear programming problem. The Hessian of the quadratic program is the sum of an approximation of the Lagrangian and of a multiple of the identity that allows us to penalize the displacement. Assuming...
Uloženo v:
| Vydáno v: | SIAM journal on optimization Ročník 5; číslo 4; s. 792 - 812 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Philadelphia
Society for Industrial and Applied Mathematics
01.11.1995
|
| Témata: | |
| ISSN: | 1052-6234, 1095-7189 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this paper we study the convergence of a sequential quadratic programming algorithm for, the nonlinear programming problem. The Hessian of the quadratic program is the sum of an approximation of the Lagrangian and of a multiple of the identity that allows us to penalize the displacement. Assuming only that the direction, is a stationary point of the current quadratic program we study the local convergence properties without strict complementarity. In particular, we use a very weak condition on the approximation of the Hessian to the Lagrangian. We obtain some global and superlinearly convergent algorithm under weak hypotheses. As a particular case we formulate an extension of Newton's method that is quadratically convergent to a point satisfying a strong sufficient second-order condition. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 content type line 14 |
| ISSN: | 1052-6234 1095-7189 |
| DOI: | 10.1137/0805038 |