Sequential Quadratic Programming with Penalization of the Displacement
In this paper we study the convergence of a sequential quadratic programming algorithm for, the nonlinear programming problem. The Hessian of the quadratic program is the sum of an approximation of the Lagrangian and of a multiple of the identity that allows us to penalize the displacement. Assuming...
Gespeichert in:
| Veröffentlicht in: | SIAM journal on optimization Jg. 5; H. 4; S. 792 - 812 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Philadelphia
Society for Industrial and Applied Mathematics
01.11.1995
|
| Schlagworte: | |
| ISSN: | 1052-6234, 1095-7189 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | In this paper we study the convergence of a sequential quadratic programming algorithm for, the nonlinear programming problem. The Hessian of the quadratic program is the sum of an approximation of the Lagrangian and of a multiple of the identity that allows us to penalize the displacement. Assuming only that the direction, is a stationary point of the current quadratic program we study the local convergence properties without strict complementarity. In particular, we use a very weak condition on the approximation of the Hessian to the Lagrangian. We obtain some global and superlinearly convergent algorithm under weak hypotheses. As a particular case we formulate an extension of Newton's method that is quadratically convergent to a point satisfying a strong sufficient second-order condition. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 content type line 14 |
| ISSN: | 1052-6234 1095-7189 |
| DOI: | 10.1137/0805038 |