On the Treatment of a Dirichlet–Neumann Mixed Boundary Value Problem for Harmonic Functions by an Integral Equation Method

Using an approach which extends the well-known classical integral equation methods, we reduce a mixed boundary value problem for harmonic functions to a system consisting of two integral equations of the second kind. Existence is proved by the Fredholm alternative for compact operators. The integral...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:SIAM journal on mathematical analysis Ročník 8; číslo 3; s. 504 - 517
Hlavní autoři: González, R., Kress, R.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Philadelphia Society for Industrial and Applied Mathematics 01.05.1977
Témata:
ISSN:0036-1410, 1095-7154
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Using an approach which extends the well-known classical integral equation methods, we reduce a mixed boundary value problem for harmonic functions to a system consisting of two integral equations of the second kind. Existence is proved by the Fredholm alternative for compact operators. The integral equations can be solved apptgximately by successive iterations. Further investigations are made on the spectrum of the boundary integral operator.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ISSN:0036-1410
1095-7154
DOI:10.1137/0508038