On the Treatment of a Dirichlet–Neumann Mixed Boundary Value Problem for Harmonic Functions by an Integral Equation Method

Using an approach which extends the well-known classical integral equation methods, we reduce a mixed boundary value problem for harmonic functions to a system consisting of two integral equations of the second kind. Existence is proved by the Fredholm alternative for compact operators. The integral...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on mathematical analysis Jg. 8; H. 3; S. 504 - 517
Hauptverfasser: González, R., Kress, R.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Philadelphia Society for Industrial and Applied Mathematics 01.05.1977
Schlagworte:
ISSN:0036-1410, 1095-7154
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Using an approach which extends the well-known classical integral equation methods, we reduce a mixed boundary value problem for harmonic functions to a system consisting of two integral equations of the second kind. Existence is proved by the Fredholm alternative for compact operators. The integral equations can be solved apptgximately by successive iterations. Further investigations are made on the spectrum of the boundary integral operator.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ISSN:0036-1410
1095-7154
DOI:10.1137/0508038