An approximate gradient algorithm for constrained distributed convex optimization

In this paper, we propose an approximate gradient algorithm for the multi-agent convex optimization problem with constraints. The agents cooperatively compute the minimum of the sum of the local objective functions which are subject to a global inequality constraint and a global constraint set. Inst...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE/CAA journal of automatica sinica Jg. 1; H. 1; S. 61 - 67
Hauptverfasser: Zhang, Yanqiong, Lou, Youcheng, Hong, Yiguang
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Chinese Association of Automation (CAA) 01.01.2014
Schlagworte:
ISSN:2329-9266, 2329-9274
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we propose an approximate gradient algorithm for the multi-agent convex optimization problem with constraints. The agents cooperatively compute the minimum of the sum of the local objective functions which are subject to a global inequality constraint and a global constraint set. Instead of each agent can get exact gradient, as discussed in the literature, we only use approximate gradient with some computation or measurement errors. The gradient accuracy conditions are presented to ensure the convergence of the approximate gradient algorithm. Finally, simulation results demonstrate good performance of the approximate algorithm.
ISSN:2329-9266
2329-9274
DOI:10.1109/JAS.2014.7004621