An approximate gradient algorithm for constrained distributed convex optimization

In this paper, we propose an approximate gradient algorithm for the multi-agent convex optimization problem with constraints. The agents cooperatively compute the minimum of the sum of the local objective functions which are subject to a global inequality constraint and a global constraint set. Inst...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE/CAA journal of automatica sinica Ročník 1; číslo 1; s. 61 - 67
Hlavní autoři: Zhang, Yanqiong, Lou, Youcheng, Hong, Yiguang
Médium: Journal Article
Jazyk:angličtina
Vydáno: Chinese Association of Automation (CAA) 01.01.2014
Témata:
ISSN:2329-9266, 2329-9274
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we propose an approximate gradient algorithm for the multi-agent convex optimization problem with constraints. The agents cooperatively compute the minimum of the sum of the local objective functions which are subject to a global inequality constraint and a global constraint set. Instead of each agent can get exact gradient, as discussed in the literature, we only use approximate gradient with some computation or measurement errors. The gradient accuracy conditions are presented to ensure the convergence of the approximate gradient algorithm. Finally, simulation results demonstrate good performance of the approximate algorithm.
ISSN:2329-9266
2329-9274
DOI:10.1109/JAS.2014.7004621