The Principal Eigenvalue of Cooperative Systems With Applications to a Model of Nonlinear Boundary Conditions
ABSTRACT In this paper, we study the eigenvalue problem for cooperative systems where the eigenvalue parameter appears on both the equation and the boundary. By utilizing a series of one‐parameter eigenvalue problems, we give a sufficient condition for the existence of the positive eigenvalue, which...
Uložené v:
| Vydané v: | Studies in applied mathematics (Cambridge) Ročník 155; číslo 5 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Cambridge
Blackwell Publishing Ltd
01.11.2025
|
| Predmet: | |
| ISSN: | 0022-2526, 1467-9590 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | ABSTRACT
In this paper, we study the eigenvalue problem for cooperative systems where the eigenvalue parameter appears on both the equation and the boundary. By utilizing a series of one‐parameter eigenvalue problems, we give a sufficient condition for the existence of the positive eigenvalue, which corresponds to the positive eigenfunction, and prove that it is unique when the system is symmetric. Then, we apply the theoretical result to investigate the existence and stability of non‐constant solutions for a general reaction‐diffusion model with nonlinear boundary conditions. In addition, the influence of nonlinear boundary conditions on the long‐time behavior of the solution is illustrated by numerical simulations. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0022-2526 1467-9590 |
| DOI: | 10.1111/sapm.70148 |