The Principal Eigenvalue of Cooperative Systems With Applications to a Model of Nonlinear Boundary Conditions

ABSTRACT In this paper, we study the eigenvalue problem for cooperative systems where the eigenvalue parameter appears on both the equation and the boundary. By utilizing a series of one‐parameter eigenvalue problems, we give a sufficient condition for the existence of the positive eigenvalue, which...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Studies in applied mathematics (Cambridge) Ročník 155; číslo 5
Hlavní autoři: Suriguga, Wu, Jianhua, Zhang, Lei
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cambridge Blackwell Publishing Ltd 01.11.2025
Témata:
ISSN:0022-2526, 1467-9590
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:ABSTRACT In this paper, we study the eigenvalue problem for cooperative systems where the eigenvalue parameter appears on both the equation and the boundary. By utilizing a series of one‐parameter eigenvalue problems, we give a sufficient condition for the existence of the positive eigenvalue, which corresponds to the positive eigenfunction, and prove that it is unique when the system is symmetric. Then, we apply the theoretical result to investigate the existence and stability of non‐constant solutions for a general reaction‐diffusion model with nonlinear boundary conditions. In addition, the influence of nonlinear boundary conditions on the long‐time behavior of the solution is illustrated by numerical simulations.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0022-2526
1467-9590
DOI:10.1111/sapm.70148