HERZ–MORREY SPACES ON THE UNIT BALL WITH VARIABLE EXPONENT APPROACHING AND DOUBLE PHASE FUNCTIONALS

Our aim in this paper is to deal with integrability of maximal functions for Herz–Morrey spaces on the unit ball with variable exponent $p_{1}(\cdot )$ approaching $1$ and for double phase functionals $\unicode[STIX]{x1D6F7}_{d}(x,t)=t^{p_{1}(x)}+a(x)t^{p_{2}}$ , where $a(x)^{1/p_{2}}$ is nonnegativ...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Nagoya mathematical journal Ročník 242; s. 1 - 34
Hlavní autori: MIZUTA, YOSHIHIRO, OHNO, TAKAO, SHIMOMURA, TETSU
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Nagoya Cambridge University Press 01.06.2021
Predmet:
ISSN:0027-7630, 2152-6842
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Our aim in this paper is to deal with integrability of maximal functions for Herz–Morrey spaces on the unit ball with variable exponent $p_{1}(\cdot )$ approaching $1$ and for double phase functionals $\unicode[STIX]{x1D6F7}_{d}(x,t)=t^{p_{1}(x)}+a(x)t^{p_{2}}$ , where $a(x)^{1/p_{2}}$ is nonnegative, bounded and Hölder continuous of order $\unicode[STIX]{x1D703}\in (0,1]$ and $1/p_{2}=1-\unicode[STIX]{x1D703}/N>0$ . We also establish Sobolev type inequality for Riesz potentials on the unit ball.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0027-7630
2152-6842
DOI:10.1017/nmj.2019.18