HERZ–MORREY SPACES ON THE UNIT BALL WITH VARIABLE EXPONENT APPROACHING AND DOUBLE PHASE FUNCTIONALS

Our aim in this paper is to deal with integrability of maximal functions for Herz–Morrey spaces on the unit ball with variable exponent $p_{1}(\cdot )$ approaching $1$ and for double phase functionals $\unicode[STIX]{x1D6F7}_{d}(x,t)=t^{p_{1}(x)}+a(x)t^{p_{2}}$ , where $a(x)^{1/p_{2}}$ is nonnegativ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nagoya mathematical journal Jg. 242; S. 1 - 34
Hauptverfasser: MIZUTA, YOSHIHIRO, OHNO, TAKAO, SHIMOMURA, TETSU
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Nagoya Cambridge University Press 01.06.2021
Schlagworte:
ISSN:0027-7630, 2152-6842
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Our aim in this paper is to deal with integrability of maximal functions for Herz–Morrey spaces on the unit ball with variable exponent $p_{1}(\cdot )$ approaching $1$ and for double phase functionals $\unicode[STIX]{x1D6F7}_{d}(x,t)=t^{p_{1}(x)}+a(x)t^{p_{2}}$ , where $a(x)^{1/p_{2}}$ is nonnegative, bounded and Hölder continuous of order $\unicode[STIX]{x1D703}\in (0,1]$ and $1/p_{2}=1-\unicode[STIX]{x1D703}/N>0$ . We also establish Sobolev type inequality for Riesz potentials on the unit ball.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0027-7630
2152-6842
DOI:10.1017/nmj.2019.18