HERZ–MORREY SPACES ON THE UNIT BALL WITH VARIABLE EXPONENT APPROACHING AND DOUBLE PHASE FUNCTIONALS
Our aim in this paper is to deal with integrability of maximal functions for Herz–Morrey spaces on the unit ball with variable exponent $p_{1}(\cdot )$ approaching $1$ and for double phase functionals $\unicode[STIX]{x1D6F7}_{d}(x,t)=t^{p_{1}(x)}+a(x)t^{p_{2}}$ , where $a(x)^{1/p_{2}}$ is nonnegativ...
Gespeichert in:
| Veröffentlicht in: | Nagoya mathematical journal Jg. 242; S. 1 - 34 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Nagoya
Cambridge University Press
01.06.2021
|
| Schlagworte: | |
| ISSN: | 0027-7630, 2152-6842 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Our aim in this paper is to deal with integrability of maximal functions for Herz–Morrey spaces on the unit ball with variable exponent
$p_{1}(\cdot )$
approaching
$1$
and for double phase functionals
$\unicode[STIX]{x1D6F7}_{d}(x,t)=t^{p_{1}(x)}+a(x)t^{p_{2}}$
, where
$a(x)^{1/p_{2}}$
is nonnegative, bounded and Hölder continuous of order
$\unicode[STIX]{x1D703}\in (0,1]$
and
$1/p_{2}=1-\unicode[STIX]{x1D703}/N>0$
. We also establish Sobolev type inequality for Riesz potentials on the unit ball. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0027-7630 2152-6842 |
| DOI: | 10.1017/nmj.2019.18 |