Fully Dynamic Connectivity in $O(\log n(\log\log n)^2)$ Amortized Expected Time

Dynamic connectivity is one of the most fundamental problems in dynamic graph algorithms. We present a randomized Las Vegas dynamic connectivity data structure with $O(\log n(\log\log n)^2)$ amortized expected update time and $O(\log n/\log\log\log n)$ worst case query time, which comes very close t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:TheoretiCS Jg. 2
Hauptverfasser: Huang, Shang-En, Huang, Dawei, Kopelowitz, Tsvi, Pettie, Seth, Thorup, Mikkel
Format: Journal Article
Sprache:Englisch
Veröffentlicht: TheoretiCS Foundation e.V 02.05.2023
Schlagworte:
ISSN:2751-4838, 2751-4838
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Dynamic connectivity is one of the most fundamental problems in dynamic graph algorithms. We present a randomized Las Vegas dynamic connectivity data structure with $O(\log n(\log\log n)^2)$ amortized expected update time and $O(\log n/\log\log\log n)$ worst case query time, which comes very close to the cell probe lower bounds of Patrascu and Demaine (2006) and Patrascu and Thorup (2011).
ISSN:2751-4838
2751-4838
DOI:10.46298/theoretics.23.6