Fully Dynamic Connectivity in $O(\log n(\log\log n)^2)$ Amortized Expected Time

Dynamic connectivity is one of the most fundamental problems in dynamic graph algorithms. We present a randomized Las Vegas dynamic connectivity data structure with $O(\log n(\log\log n)^2)$ amortized expected update time and $O(\log n/\log\log\log n)$ worst case query time, which comes very close t...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:TheoretiCS Ročník 2
Hlavní autori: Huang, Shang-En, Huang, Dawei, Kopelowitz, Tsvi, Pettie, Seth, Thorup, Mikkel
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: TheoretiCS Foundation e.V 02.05.2023
Predmet:
ISSN:2751-4838, 2751-4838
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Dynamic connectivity is one of the most fundamental problems in dynamic graph algorithms. We present a randomized Las Vegas dynamic connectivity data structure with $O(\log n(\log\log n)^2)$ amortized expected update time and $O(\log n/\log\log\log n)$ worst case query time, which comes very close to the cell probe lower bounds of Patrascu and Demaine (2006) and Patrascu and Thorup (2011).
ISSN:2751-4838
2751-4838
DOI:10.46298/theoretics.23.6