Fast Encoding and Decoding Algorithms for Arbitrary (n,k) Reed-Solomon Codes Over \mathbb

Recently, a new polynomial basis over finite fields was proposed such that the computational complexity of the fast Fourier transform (FFT) is <inline-formula> <tex-math notation="LaTeX">O(n\log n) </tex-math></inline-formula>. Based on FFTs, the encoding and decodi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE communications letters Jg. 24; H. 4; S. 716 - 719
Hauptverfasser: Tang, Nianqi, Lin, Yun
Format: Journal Article
Sprache:Englisch
Veröffentlicht: IEEE 01.04.2020
Schlagworte:
ISSN:1089-7798, 1558-2558
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recently, a new polynomial basis over finite fields was proposed such that the computational complexity of the fast Fourier transform (FFT) is <inline-formula> <tex-math notation="LaTeX">O(n\log n) </tex-math></inline-formula>. Based on FFTs, the encoding and decoding algorithms for Reed-Solomon (RS) codes were proposed, which are shown to have the lowest computational complexity in the literature. However, these algorithms require that the code length and the number of parity symbols must be power of two. In this letter, we present the encoding and decoding algorithms for arbitrary RS codes based on FFTs. Furthermore, these new algorithms also reach the best known complexity bound.
ISSN:1089-7798
1558-2558
DOI:10.1109/LCOMM.2020.2965453