Fast Encoding and Decoding Algorithms for Arbitrary (n,k) Reed-Solomon Codes Over \mathbb

Recently, a new polynomial basis over finite fields was proposed such that the computational complexity of the fast Fourier transform (FFT) is <inline-formula> <tex-math notation="LaTeX">O(n\log n) </tex-math></inline-formula>. Based on FFTs, the encoding and decodi...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE communications letters Ročník 24; číslo 4; s. 716 - 719
Hlavní autori: Tang, Nianqi, Lin, Yun
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: IEEE 01.04.2020
Predmet:
ISSN:1089-7798, 1558-2558
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Recently, a new polynomial basis over finite fields was proposed such that the computational complexity of the fast Fourier transform (FFT) is <inline-formula> <tex-math notation="LaTeX">O(n\log n) </tex-math></inline-formula>. Based on FFTs, the encoding and decoding algorithms for Reed-Solomon (RS) codes were proposed, which are shown to have the lowest computational complexity in the literature. However, these algorithms require that the code length and the number of parity symbols must be power of two. In this letter, we present the encoding and decoding algorithms for arbitrary RS codes based on FFTs. Furthermore, these new algorithms also reach the best known complexity bound.
ISSN:1089-7798
1558-2558
DOI:10.1109/LCOMM.2020.2965453