The Algorithm Configuration Problem

The field of algorithmic optimization has significantly advanced with the development of methods for the automatic configuration of algorithmic parameters. This article delves into the Algorithm Configuration Problem, focused on optimizing parametrized algorithms for solving specific instances of de...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:arXiv.org
Hlavní autori: Iommazzo, Gabriele, D'Ambrosio, Claudia, Frangioni, Antonio, Liberti, Leo
Médium: Paper
Jazyk:English
Vydavateľské údaje: Ithaca Cornell University Library, arXiv.org 01.03.2024
Predmet:
ISSN:2331-8422
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:The field of algorithmic optimization has significantly advanced with the development of methods for the automatic configuration of algorithmic parameters. This article delves into the Algorithm Configuration Problem, focused on optimizing parametrized algorithms for solving specific instances of decision/optimization problems. We present a comprehensive framework that not only formalizes the Algorithm Configuration Problem, but also outlines different approaches for its resolution, leveraging machine learning models and heuristic strategies. The article categorizes existing methodologies into per-instance and per-problem approaches, distinguishing between offline and online strategies for model construction and deployment. By synthesizing these approaches, we aim to provide a clear pathway for both understanding and addressing the complexities inherent in algorithm configuration.
Bibliografia:SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
ISSN:2331-8422
DOI:10.48550/arxiv.2403.00898