The Algorithm Configuration Problem

The field of algorithmic optimization has significantly advanced with the development of methods for the automatic configuration of algorithmic parameters. This article delves into the Algorithm Configuration Problem, focused on optimizing parametrized algorithms for solving specific instances of de...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:arXiv.org
Hlavní autoři: Iommazzo, Gabriele, D'Ambrosio, Claudia, Frangioni, Antonio, Liberti, Leo
Médium: Paper
Jazyk:angličtina
Vydáno: Ithaca Cornell University Library, arXiv.org 01.03.2024
Témata:
ISSN:2331-8422
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The field of algorithmic optimization has significantly advanced with the development of methods for the automatic configuration of algorithmic parameters. This article delves into the Algorithm Configuration Problem, focused on optimizing parametrized algorithms for solving specific instances of decision/optimization problems. We present a comprehensive framework that not only formalizes the Algorithm Configuration Problem, but also outlines different approaches for its resolution, leveraging machine learning models and heuristic strategies. The article categorizes existing methodologies into per-instance and per-problem approaches, distinguishing between offline and online strategies for model construction and deployment. By synthesizing these approaches, we aim to provide a clear pathway for both understanding and addressing the complexities inherent in algorithm configuration.
Bibliografie:SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
ISSN:2331-8422
DOI:10.48550/arxiv.2403.00898